Audio-based Relative Positioning System for Multiple Micro Air Vehicle Systems
نویسندگان
چکیده
Employing a group of independently controlled flying micro air vehicles (MAVs) for aerial coverage missions, instead of a single flying robot, increases the robustness and efficiency of the missions. Designing a group of MAVs requires addressing new challenges, such as inter-robot collision avoidance and formation control, where individual’s knowledge about the relative location of their local group members is essential. A relative positioning system for a MAV needs to satisfy severe constraints in terms of size, weight, processing power, power consumption, three-dimensional coverage and price. In this paper we present an on-board audio based system that is capable of providing individuals with relative positioning information of their neighbouring sound emitting MAVs. We propose a method based on coherence testing among signals of a small onboard microphone array to obtain relative bearing measurements, and a particle filter estimator to fuse these measurements with information about the motion of robots throughout time to obtain the desired relative location estimates. A method based on fractional Fourier transform (FrFT) is used to identify and extract sounds of simultaneous chirping robots in the neighbourhood. Furthermore, we evaluate our proposed method in a real world experiment with three simultaneously flying micro air vehicles.
منابع مشابه
Audio based Relative Positioning system for a Swarm of Micro Air Vehicles
Employing a swarm of independently controlled flying micro air vehicles (MAVs) for aerial coverage missions, instead of a single flying robot, increases the robustness and efficiency of the missions. Designing a swarm of MAVs requires addressing new challenges, such as inter-robot collision avoidance and formation control, where individual’s knowledge about the relative location of their local ...
متن کاملSingle Seven State Discrete Time Extended Kalman Filter for Micro Air Vehicle
The term Micro Air Vehicles (MAVs) is used for a new type of remotely controlled, semi-autonomous or autonomous aircraft that is significantly smaller than conventional aircrafts. To apply Micro Electro Mechanical Systems (MEMS) inertial sensors for the Guidance, Navigation and Control (GNC) of Micro Air Vehicle (MAV) is an extremely challenging area. The major components of the control system ...
متن کاملLow-cost Image-assisted Inertial Navigation System for a Micro Air Vehicle
The increasing civilian demand for autonomous aerial vehicle platforms in both hobby and professional markets has resulted in an abundance of inexpensive inertial navigation systems and hardware. Many of these systems lack full autonomy, relying on the pilot’s guidance with the assistance of inertial sensors for guidance. Autonomous systems depend heavily on the use of a global positioning sate...
متن کاملGPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering
The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...
متن کاملInvestigation of Different Validation Parameters of Micro Gas Turbine for Range Extender Electric Truck
Nowadays the demand for reducing pollutant emissions and fuel consumption have paved the way of developing more fuel-efficient power generation system for transportation sector. Micro gas turbine (MGT) system can be an alternative to internal combustion reciprocating engine due to its light-weight and less fuel consumption. In this paper, some major running and operating characteristics of MGT ...
متن کامل